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1
METHOD AND SYSTEM FOR CODE
ANALYSIS USING SYMBOLIC TYPES

BACKGROUND

Software testing is used to improve the quality of software.
The basic technique is by defining a set of inputs to the
program, called the test case. Each input in the test case
defines concrete variable values. The test case is executed by
the software to identify defects in the software. Multiple test
cases may be defined to create a test set. For example, test
cases may have mutations of variable values from other test
cases in the test set. The coverage level of a test set is the
number of different instructions executed in the software
having a variety of inputs. In general, the greater the coverage
level, the more likely that any and most defects are found in
the software. In other words, a high-coverage test set includes
a variety of inputs that causes a large proportion of the soft-
ware under test to be executed.

SUMMARY

In general, in one aspect, embodiments relate to a method
for code analysis, including generating, by a computer pro-
cessor, an execution path through software code. Generating
the execution path includes adding, for an object having an
undefined class, a first symbolic type constraint to a path
condition of the first execution path based on a first statement
in the execution path, and adding, for the object having the
undefined class, a second symbolic type constraint to the path
condition of the execution path based on a second statement
in the first execution path. The method further includes the
computer processor making a determination that the path
condition of the execution path is infeasible based on the first
symbolic type constraint of the object being inconsistent with
the second symbolic type constraint of the object, and dis-
carding the execution path based on the determination.

In general, in one aspect, embodiments relate to a system
for code analysis including a computer processor, a data
repository for storing software code and symbolic type rules,
and a debugger executing on the computer processor. The
debugger includes a symbolic type analysis engine including
a symbolic type path analyzer for generating an execution
path through software code. Generating the execution path
includes adding, for an object having an undefined class, a
first symbolic type constraint to a path condition of the execu-
tion path based on a first statement in the first execution path,
and adding, for the object having the undefined class, a sec-
ond symbolic type constraint to the path condition of the
execution path based on a second statement in the execution
path. The symbolic type analysis engine further includes a
constraint solver for making a determination that the path
condition of the execution path is infeasible based on the first
symbolic type constraint of the object being inconsistent with
the second symbolic type constraint of the object, and dis-
carding the execution path based on the determination.

In general, in one aspect, embodiments relate to a non-
transitory computer readable medium for code analysis,
including instructions for generating an execution path
through software code. Generating the execution path
includes adding, for an object having an undefined class, a
first symbolic type constraint to a path condition of the execu-
tion path based on a first statement in the execution path, and
adding, for the object having the undefined class, a second
symbolic type constraint to the path condition of the execu-
tion path based on a second statement in the execution path.
The instructions are further for making a determination that
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the path condition of the execution path is infeasible based on
the first symbolic type constraint of the object being incon-
sistent with the second symbolic type constraint of the object,
and discarding the execution path based on the determination.

Other aspects of the invention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a schematic diagram of a system in accor-
dance with one or more embodiments of the invention.

FIGS. 2,3, 4, and 5 show flowcharts in accordance with one
or more embodiments of the invention.

FIG. 6 shows a computing system in accordance with one
or more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described in detail with reference to the accompanying fig-
ures. Like elements in the various figures are denoted by like
reference numerals for consistency.

Inthe following detailed description of embodiments of the
invention, numerous specific details are set forth in order to
provide a more thorough understanding of the invention.
However, it will be apparent to one of ordinary skill in the art
that the invention may be practiced without these specific
details. In other instances, well-known features have not been
described in detail to avoid unnecessarily complicating the
description.

Throughout the application, ordinal numbers (e.g., first,
second, third, etc.) may be used as an adjective for an element
(i.e., any noun in the application). The use of ordinal numbers
is not to imply or create any particular ordering of the ele-
ments nor to limit any element to being only a single element
unless expressly disclosed, such as by the use of the terms
“before”, “after”, “single”, and other such terminology.
Rather, the use of ordinal numbers is to distinguish between
the elements. By way of an example, a first element is distinct
from a second element, and the first element may encompass
more than one element and succeed the second element in an
ordering of elements.

In general, embodiments of the invention perform object
oriented symbolic testing of software code. In the object
oriented software testing, not only are the values of the
objects, but also the types of the objects are represented using
symbols. As used in this application, an object is an instance
of a class, whereby the object may be one or more variables,
one or more methods, one or more data structure, or a com-
bination thereof. A type of the object is the class of which the
object is an instance. A symbol is a placeholder for the actual
(i.e., concrete) value or type. An object has an undefined class
when the class of which the object is an instance is not
expressly defined in the software code.

In one or more embodiments of the invention, rather than
the actual value of the object and the actual class of the object,
symbols are used. For example, the value of the variable x
may be symbolically represented using the value X, whereby
X may be any value, and the type of the variable x may be
symbolically represented using the value T, whereby T may
be any type (i.e., represent an instance of any class).

One or more embodiments of the invention use the symbols
to identify or enumerate execution paths through software
code. As the execution path is identified, symbolic type con-
straints and symbolic value constraints are added to the
execution path. If the symbolic type constraints and the sym-
bolic value constraints are capable of being satisfied (i.e., are
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consistent), then the execution path is deemed feasible. If
either or both the symbolic type constraints or the symbolic
value constraints are not capable of being satisfied (i.e., are
not consistent), then the execution path is deemed infeasible.
In other words, the software code cannot take the particular
execution path. Objects having a defined class may not be
symbolically represented using symbolic types and may be
represented using symbolic values, while objects having an
undefined class are symbolically represented using symbolic
types and symbolic values in accordance with one or more
embodiments of the invention.

FIG. 1 shows a schematic diagram of a system in accor-
dance with one or more embodiments of the invention. As
shown in FIG. 1, the system includes a data repository (102)
and a debugger (104) in accordance with one or more embodi-
ments of the invention. Both of these components are
described below.

In one or more embodiments of the invention, the data
repository (102) is any type of storage unit and/or device (e.g.,
random access memory, flash memory, a file system, data-
base, collection of tables, or any other storage mechanism) for
temporarily or permanently storing data. Further, the data
repository (102) may include multiple different storage units
and/or devices. The multiple different storage units and/or
devices may or may not be of the same type or located at the
same physical site. The data repository includes functionality
to store software code (106), one or more execution paths
(108), symbolic test rules (110), and test cases (112).

Software code (106) corresponds to software instructions
that are being tested in accordance with one or more embodi-
ments of the invention. In one or more embodiments of the
invention, software code (106) may be all or a portion of the
software instructions in a code library. For example, the
library may be a public interface that executes differently
given different types of inputs from a software application.
Specifically, the library may receive, as input, different types
of'objects, whereby the type of object that the library receives
is not known when the library is developed and whereby the
execution of the code in the library is dependent on the type of
object received. Alternatively or additionally, the software
code (106) may be all or a portion of the software instructions
in an application. The software code may correspond to a file,
a class, a method, a procedure, a set of lines of code, a set of
files, set of methods, a set of classes, a set of procedures, or
another portion or all of the software code being analyzed.
Further, the software code (106) may be in any stage of the
development process. For example, the software code (106)
may be in the process of being developed, undergoing inter-
mediate or final testing, being compiled, released, being
patched after release, or at any other stage. Additionally, the
software code (106) may be source code, binary code, an
intermediate representation, machine code, in another repre-
sentation, or any combination thereof.

In one or more embodiments of the invention, the software
code (106) includes statements. Each statement may be all or
a portion of line of code. In one or more embodiments of the
invention, a statement includes one or more expressions. An
expression includes an operation and at least one object on
which the operation acts. For example, a statement may cor-
respond to or include a primitive operation, a method invo-
cation, a condition branch instruction, a cast expression, or
another expression or combination of expressions.

In one or more embodiments of the invention, the software
code (106) may include one or more execution path(s) (108).
An execution path (108) is a path of instructions through the
software code (106). Specifically, an execution path (108) is
an ordering or series of the instructions in the software code
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according to the order in which the instructions may be
executed. The execution path (108) may include a single
instruction included more than once to indicate that the
instruction may be executed more than once and other
instruction(s) not executed at all. For example, instructions in
a single method may be listed multiple times (e.g., each time
that a call to the single method exists in the software code). By
way of another example, two separate execution paths may
exist for a conditional branch that has an if condition and an
else condition, whereby, in one execution path, the instruc-
tions in the body of the if condition are listed and the instruc-
tions in body of the else condition are not listed while, in the
other execution path, the instructions in the body of the else
condition are listed and the instructions in body of the if
condition are not listed. An execution path (108) may be
feasible or infeasible. A feasible execution path is an execu-
tion path that has the potential or is possible to be executed
when the software code is executed. An infeasible execution
path is impossible to be executed. For example, consider the
following series of instructions:

(instruction 1) if x<y,

(instruction 2) then x=y-3;

(instruction 3) if x>y,

(instruction 4) then y=2.

In the example, the following execution paths are feasible:
execution path (a): (instruction 1): x<y=false, (instruction
3) x>y=true, (instruction 4) y=2;
execution path (b): (instruction 1): x<y=false, (instruction
3) x>y=false; and
execution path (c): (instruction 1): x<y=true, (instruction
2) x=y-3; (instruction 3) x>y=true.
Further, in the example, the following execution path is infea-
sible:

execution path (d): (instruction 1): x<y=true, (instruction

2) x=y-3; (instruction 3) x>y=true, (instruction 4) y=2;
Specifically, in execution path (d), instruction (2) changes x to
be equal to three less than y. Thus, x cannot be greater than y
after instruction (2) is executed, thereby making execution
path (d) infeasible.

By way of another example, consider the scenario in which
object Obj has an undefined class and the following two
classes are defined sedan class and pickup truck class, where
neither the sedan class nor the pickup_truck class inherit from
the other class. In the example, consider the following series
of instructions:

(instruction 1) if Obj instanceof sedan;

(instruction 2) then Obj.open_trunk( );

(instruction 3) if Obj instanceof pickup_truck;

(instruction 4) then Obj.open_tailgate( ).

In the example, the following execution paths are feasible:
execution path (a): (instruction 1): Obj instanceof
sedan=false,  (instruction 3) Obj instanceof
pickup_truck=true, (instruction 4) Obj.open_tailgate( );
execution path (b): (instruction 1): Obj instanceof
sedan=false,  (instruction 3) Obj instanceof
pickup_truck=false; and

execution path (c): (instruction 1): Obj instanceof

sedan=true, (instruction 2) Obj.open_trunk( ); (instruc-

tion 3) Obj instanceof pickup_truck=false;
Further, in the example, the following execution path is infea-
sible:

execution path (d): (instruction 1) Obj instanceof

sedan=true; (instruction 2) Obj.open_trunk( ); (instruc-

tion 3) Obj instanceof pickup_truck=true; (instruction

4) Obj.open_tailgate( ).

Specifically, in execution path (d), the object Obj is an
instance of sedan class in instruction (1) and an instance of
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pickup_truck in instruction (3), but, because the sedan class
and the pickup_truck class do not inherit from one to the
other, the Obj cannot be both an instance of the sedan class
and an instance of the pickup_truck class. Thus, the symbolic
type constraints on object Obj of execution path (d) are incon-
sistent making execution path (d) infeasible. One or more
embodiments of the invention enumerate each of the above
execution paths using a symbolic type for the object and then
determine which execution paths are feasible and which
execution paths are infeasible.

In one or more embodiments of the invention, the execu-
tion path(s) (108) in the data repository (102) are generated or
identified by the debugger (104) (discussed below). As part of
generating the execution path (108), the execution path (108)
includes a symbolic trace (114), a stack (116), and a heap
(118). The symbolic trace (114) is an ordered listing of the
sequence of instructions in the execution path (108). The
symbolic trace includes an identifier of the instruction (i.e.,
the instruction itself or a unique identifier of the instruction),
the symbolic values and symbolic types that are used by or
result from the instruction, and path conditions for the execu-
tion path. The stack (116) is a data structure that stores infor-
mation about the active methods of the software code and is
used to generate the symbolic trace (114). The stack (116)
may be referred to as an execution stack, a control stack, a
run-time stack, or a machine stack. In some embodiments,
rather than being used during execution, the stack is a data
structure that is used during analysis of the software code.
Thus, for at least some of the objects, the stack may store
symbols rather than actual values and type information.

In other words, the execution path is identified by deter-
mining the sequence of instructions that would be executed.
For each method invocation in the sequence, a new frame is
added to the stack (116). The frame stores information about
parameters, local variables, context, and other information
about each invoked method that is being analyzed. When the
symbolic trace through the method corresponding to the
active frame completes, the frame is removed from the stack.
For example, consider the scenario in which the software
code includes method A, which includes a call to method B
and method C, method B includes a call to method D, and
method D includes a call to method C. In the example, to
create the symbolic trace (114), the stack may be updated as
follows: a frame for method A is added, a frame for method B
is added, a frame for method D is added, a frame for method
C is added (corresponding to the call from method D), the
frame for method C is removed, the frame for method D is
removed, the frame for method B is removed, the frame for
method C is added (corresponding to the method call from A),
the frame for method C is removed, and the frame for method
A is removed.

In one or more embodiments of the invention, the heap
(118) corresponds to a data structure representing the pool of
memory that would be allocated to the software code (106)
when the software code is executed. Specifically, the heap
(118) corresponds to a storage for heap objects and corre-
sponding fields that would be placed in memory during
execution of the software code. Similar to the stack (116), the
heap (118) is used to generate the symbolic trace (114) and
represents the heap that is created during execution.

Continuing with the data repository (102), in one or more
embodiments of the invention, symbolic type rules (110)
correspond to a set of rules that translate statements to sym-
bolic type constraints. A symbolic type constraint is a con-
straint on a symbolic type. In particular, a symbolic type
constraint translates a statement in the software code to a limit
on the possible types that an object may be. For example, an
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instance of rule may translate an instance of expression hav-
ing a target class to a symbolic type constraint that the unde-
fined class of an object is the target class in an instance of
expression or extends the target class in the instance of
expression. The target class is the class that is called in the
expression. By way of another example, a cast rule may
translate a cast expression having a target class to a symbolic
type constraint that the undefined class of an object is the
target class in a cast expression or extends the target class in
the cast expression. By way of another example, an invoke
rule may translate a method call expression, or invoke expres-
sion, as constraining the class of the object to one of the target
classes implementing the method or extending one of the
target classes having the method. The use of words instance
of, cast, and invoke is intended to include equivalent opera-
tions in all object oriented programming languages. Such
equivalent operations may be exactly equivalent or be one or
more variation operations that are similar to the correspond-
ing aforementioned operation in Java® programming lan-
guage. Java® is a registered trademark of Oracle America,
Inc., located in Redwood Shores, Calif.

In one or more embodiments of the invention, a test case is
a set of concrete or actual values that is input to the software
code for testing. Specifically, a test case corresponds to an
example set of input for execution by the software code. In
other words, the software code may be executed using the test
case. Thus, whereas the symbolic trace is created by analyz-
ing the instructions of the software code and includes sym-
bols, the test case corresponds to actual values that are pro-
vided as input to the software code, does not include symbols,
and is used to generate, by the software code, actual results or
show defects of the software code. Although only a single test
case is shown in FIG. 1, the data repository may include a test
set that includes multiple test cases. The multiple test cases
may correspond to inputs for executing different feasible
execution paths.

In one or more embodiments of the invention, symbolic
type rules may further include rules to manage symbolic
types when the software code uses reflection instructions,
and, thereby, support reflection calls. In general, reflection is
a mechanism by which the software code may examine and
modify the behavior of the software code at runtime. Support-
ing reflection calls may include adding additional tracking
information, tracking additional objects, and/or additional
type constraints. In one or more embodiments of the inven-
tion, the symbolic type analysis engine (discussed below)
may use the symbolic type rules, including the symbolic type
rules for reflection, to analyze the software code.

For example, a for name reflection call returns a new class
object that has the provided string name. If the software code
includes a for name reflection call, the symbolic type rules
includes a rule that associates the returned class object that is
created with a new symbolic type. In other words, a symbolic
type rule may identify the for name reflection call as the
creation of a new object for which symbolic type analysis
should be performed. By way of another example, the get
declared method reflective call returns an array of method
objects that reflect the methods declared by the class object.
The symbolic type rule for the get declared method reflective
call may associate the class object with the method signature
to represent the symbolic type of the class object. By way of
another example, the get declaring class reflective call returns
a class object of a class in which a method was declared. The
symbolic type rule for the get declaring class may associate
the returned class object with a new symbolic type. In one or
more embodiments of the invention, the above are only a few
examples of how reflection may be supported by the symbolic
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type rules. Other example techniques may be used without
departing from the scope of the invention.

Continuing with FIG. 1, a debugger (104) is hardware,
software, firmware or a combination thereof that includes
functionality to identify defects in software code (104). A
defect is a bug in the software code. For example, a defect
may be caused by an error in the instructions of the software
code, an unrecognized requirement of the software code, such
as an omission of a requirement, that is an unintentional
negative consequence of executing the software code. For
example, a defect may be a memory leak, be slower execu-
tion, incorrect results, crashing the software code. In one or
more embodiments of the invention, the debugger (104)
includes a symbolic type analysis engine (120), a testing
engine (122), and a report generator (124).

The symbolic type analysis engine (120) includes func-
tionality to analyze the software code (106) using symbolic
types and symbolic values, identify feasible and infeasible
execution paths, and generate test cases (112). The symbolic
type analysis engine (120) includes a symbolic type path
analyzer (126) and a constraint solver (128). The symbolic
type path analyzer (126) includes functionality to analyze the
software code (106) and generate one or more execution paths
(108) using symbolic types and symbolic values. Specifically,
the symbolic type path analyzer (126) includes functionality
to obtain, for instructions in the software code (106), the
corresponding symbolic type rule(s) (110) that apply to the
instruction, and update the execution path (108) based on the
corresponding symbolic type rule(s). The execution path
(108) from the symbolic type path analyzer includes sym-
bolic type constraints and/or non-symbolic type constraints.
The symbolic type path analyzer (126) further includes func-
tionality to generate additional possible executions paths
based on path constraints in the execution path.

In one or more embodiments of the invention, a path con-
straint is a requirement on the execution path for the execution
path to be executed. Specifically, path constraints may be
constraints defined by conditional branch instructions in the
execution path. A path constraint may include one or more
symbolic type constraints and/or one or more non-symbolic
type constraints, such as symbolic value constraints.

In one or more embodiments of the invention, the combi-
nation of symbolic type constraints that not in the conditional
branch instruction and path constraints on a path form the
path condition. The path condition includes the combination
of'the constraints on the execution path that must be satisfied
for the execution path to be feasible. The path condition
includes a path constraint corresponding to the branch in the
execution path for each conditional branch instruction along
the execution path and a symbolic type constraint for each
possible class of which an object may be.

In one or more embodiments of the invention, the con-
straint solver (128) includes functionality to determine
whether an execution path is feasible based on the path con-
straints. Further, the constraint solver (128) includes func-
tionality to generate one or more test cases for the feasible
execution path(s).

Continuing with the debugger (104), the testing engine
(122) includes functionality to track the execution of the
software code (106) with the test cases (112) to generate
results. For example, the testing engine (122) may provide, as
input to the software code (106), a test case, and may trace the
execution of the software code using the test case. As part of
tracing the execution of the software code, the testing engine
(122) may include functionality to identify which instructions
in the software code were executed (e.g., the coverage of the
test), the values of variables during the execution, identify
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defect(s), if existing, based on the execution using the test
case, gather metrics (e.g., execution speed, etc), other debug-
ging information, or a combination thereof.

The report generator (124) includes functionality to gen-
erate one or more reports based on the debugging. The report
generator (124) may further include functionality to present
the report to a reviewer, developer or other user of the debug-
ging tool, such as by sending the report or displaying the
report. A report may include a listing of the symbolic trace for
feasible and/or infeasible execution paths, the test case(s)
(112), debugging information gathered while tracing the
execution of the software code, other information, or a com-
bination thereof. Further, the report may be static or dynamic.
For example, the user may select particular portions of the
report to view additional information and/or perform addi-
tional debugging analysis on the software code.

While FIG. 1 shows a configuration of components, other
configurations may be used without departing from the scope
of the invention. For example, various components may be
combined to create a single component. As another example,
the functionality performed by a single component may be
performed by two or more components. For example, all or a
part of the symbolic type rules (110) may be a part of the
symbolic type analysis engine (120) and/or the symbolic type
path analyzer (126). Specifically, all or part of the symbolic
type rules (110) may be encoded as software instructions in
the symbolic type analysis engine (120). Alternatively or
additionally, the symbolic type rules (110) may be separate
from the symbolic type analysis engine (120). Further, the
connections between the various components in FIG. 1 may
be direct or indirect connections. For example, the symbolic
type analysis engine (120) may load data into the data reposi-
tory (102) and the data may be retrieved by the testing engine
(122) without a specific call from the symbolic type analysis
engine (120) to the testing engine (122).

FIGS. 2-5 show flowcharts in accordance with one or more
embodiments of the invention. While the various steps in
these flowcharts are presented and described sequentially,
one of ordinary skill will appreciate that some or all of the
steps may be executed in different orders, may be combined
or omitted, and some or all of the steps may be executed in
parallel. Furthermore, the steps may be performed actively or
passively. For example, some steps may be performed using
polling or be interrupt driven in accordance with one or more
embodiments of the invention. By way of an example, deter-
mination steps may not require a processor to process an
instruction unless an interrupt is received to signify that con-
dition exists in accordance with one or more embodiments of
the invention. As another example, determination steps may
be performed by performing a test, such as checking a data
value to test whether the value is consistent with the tested
condition in accordance with one or more embodiments of the
invention.

FIG. 2 shows a flowchart for enumerating one or more
execution path(s) using symbolic types in accordance with
one or more embodiments of the invention. In Step 201, a
statement is identified in accordance with one or more
embodiments of the invention. In one or more embodiments
ofthe invention, statements are identified in an order in which
the statements would be executed. If the software code cor-
responds to an application, then the initial statement identi-
fied is the initial statement in the main method. If the software
code corresponds to a library, than the initial statement iden-
tified is the initial statement of a class in the library that may
be called by another program. Similarly, the next statement,
and so on, is determined as the next statement that would be
executed in the order of the execution. In one or more embodi-
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ments of the invention, as discussed above, a statement may
correspond to all or part of an instruction. For example, “x=x+
Obj.getlntValue( )” may be deemed to have two statements:
“Obj.getIntValue( )=result” and “x=x+result”. In the
example, “Obj.getIntValue( )=result” is identified and ana-
lyzed prior to “x=x+result” in accordance with one or more
embodiments of the invention. Alternatively or additionally,
the entire instruction may be identified and analyzed at the
same time.

In Step 203, a determination is made whether the statement
is a conditional branch instruction in accordance with one or
more embodiments of the invention. As discussed above, a
conditional branch instruction is an instruction in which
execution may proceed along different branches based on the
outcome of a condition in the conditional branch instruction.
For example, a conditional branch instruction may be an
if-condition, else condition, loop instruction, switch state-
ment, or other branch instruction, etc. Determining whether a
statement is a conditional branch instruction may be per-
formed by comparing the statement with the syntax grammar
of'the language in which the statement is written. The syntax
grammar is captured in the symbolic type rules. For example,
in many languages, an if-statement follows the following
grammar: “if (*)”, where * is the condition for the if-state-
ment. In the example, a symbolic type rule exists that maps a
statement having the form, “if (*)”, to the updates for the
stack, heap, and/or symbolic trace based on the statement.

In one or more embodiments of the invention, if the state-
ment is a conditional branch instruction, a path constraint is
added to the path condition for the path in Step 205. Specifi-
cally, the symbolic type rule matching the conditional branch
instruction adds the path constraint defined in the condition to
the execution path. More specifically, the symbolic trace may
be updated with the path constraint. In some embodiments,
during a first symbolic analysis of the software code, the
conditions in the conditional branch instructions are added as
path constraints by creating a path constraint requiring that
the condition is evaluated to true in order to generate a single
execution path. After the first symbolic analysis, the path
conditions are mutated to generate additional execution
paths. In alternative or additional embodiments, multiple
paths may be generated when the conditional branch is first
evaluated by setting one path to true and the other path to
false. Other techniques for handling conditional branch
instructions may be performed without departing from the
scope of the invention.

In one or more embodiments of the invention, updating the
symbolic trace includes adding the symbolic values and/or
symbolic types to the symbolic trace rather than the exact
condition. For example, if value of x is represented as X and
the condition is “x>2", then “X>2=true” is added to the sym-
bolic trace as a path condition for the path in accordance with
one or more embodiments of the invention. As another
example, if the statement is an if condition requiring that the
object is an instance of a particular class, the constraint that
the object is an instance of the particular class is evaluated to
true added to the symbolic trace as a path condition for the
path.

Alternatively, if the statement is not a conditional branch
instruction, then the statement is added to the path in Step
207. Adding the statement to the path may include updating
the symbolic trace, the stack, and the heap. For example, the
symbolic trace may be updated to include an identifier of the
statement. The stack and/or the heap may be updated to reflect
the changes performed by the statement. For example, if the
statement is a method invocation, a new frame may be added
to the stack. If the statement is an update to a variable or object
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of the program, then the symbolic values for the variable or
object are updated based on the statement. The update may be
performed by using the symbolic type rules. Specifically, as
discussed above, the symbolic type rule corresponding to the
statement is identified based on the syntax grammar in the
symbolic type rule matching the statement. The symbolic
type rule defines how to update the symbolic trace, the stack,
and/or the heap based on the statement.

In Step 209, a determination is made whether the statement
constrains the type of an object in accordance with one or
more embodiments of the invention. A statement is consid-
ered to constrain the type of object when the object has an
undefined class and the statement limits the class in which the
object may be an instance. The determination may be per-
formed using symbolic type rules in accordance with one or
more embodiments of the invention.

In one or more embodiments of the invention, if the state-
ment constrains the type of the object, then the type constraint
is added to the path condition in Step 211. Adding the type
constraint to the path condition may be performed by obtain-
ing the symbol corresponding to the class of the object and
updating the symbol to include the additional type constraint
for the object. Specifically, the symbol may be obtained from
the heap and the stack and the symbolic trace may be updated
with the symbolic type constraint using the symbol. Perform-
ing Step 211 is discussed in further detail below and in FIG.
4 in accordance with one or more embodiments of the inven-
tion. Alternative or additional steps for performing Step 211
that are not included in FIG. 4 may be performed without
departing from the scope of the invention. In one or more
embodiments of the invention, if the execution proceeds
along a certain path, where the class of the object is undefined
and, thus, multiple possible paths exist, then a path constraint
is added that the selected path must be taken. For example, in
a method invocation on an object having an undefined class,
the path constraint is that the method invocation must call the
selected method in the selected class.

In one or more embodiments of the invention, the above
analysis is performed according to the symbolic type rules.
Specifically, the symbolic type rule matching the statement
being analyzed may be applied to the statement to update
tracking information in the symbolic trace, stack, and heap. In
other words, for each statement in which a matching symbolic
type rule is found, the symbolic type rule is applied to the
statement to update the tracking information and, possibly,
add symbolic constraints and path conditions. In one or more
embodiments of the invention, the analysis is performed by
the symbolic type path analyzer.

In Step 213, a determination is made whether another
statement exists in accordance with one or more embodi-
ments of the invention. If another statement exists that is not
analyzed, then the next statement is identified in Step 201 in
accordance with one or more embodiments of the invention.

FIG. 3 shows a flowchart for generating additional paths in
accordance with one or more embodiments of the invention.
In Step 301, a path condition for an existing path is identified
in accordance with one or more embodiments of the inven-
tion. As discussed above, the path condition includes the
constraints on the execution path in order for the execution
path to be performed. In Step 303, constraints in the path
condition are identified in accordance with one or more
embodiments of the invention.

In Step 305, each constraint in the path condition is
mutated to generate one or more new paths in accordance
with one or more embodiments of the invention. For path
constraints, mutating the path condition may be performed by
changing a path constraint to evaluate to false rather than true
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and determining the new execution path based on the path
constraint being equal to false. Determining the new execu-
tion path may be performed by copying the existing execution
path up to the statement in which the constraint is added and
performing FIG. 2 for instructions after the statement in
which the constraint was added. For example, for nested if
statements, if the outer path constraint is evaluated to false,
then the inner instructions including the inner nested path
constraints would not be executed and, thus, are not added to
the new execution path(s). For if statements in series, if the
first constraint is evaluated to false, the following if state-
ments would be executed and, thus, may be set to true or false
in the new execution paths.

For method invocations on objects belonging to an unde-
fined class, the mutating of the path constraint corresponds to
performing the method invocation on the various methods in
the different possible classes. Specifically, for the first path,
the symbolic type constraint is that the target call function
must be function f as in the concrete execution. To mutate the
constraint, the constraint changes to the target call function
must not be f, and the constraint is solved to generate a set of
solutions to call different targets. When the constraint is
solved, the original symbolic type constraint that the method
invocation is to the method in the target class or invokes a
class that inherits from the target class and implements the
method remains. For example, consider the scenario in which
a class drwObj exists that has a method obj.Draw(win) for
drawing the object in window win. A circle class extends the
drawObj class and implements the Draw(win) method for
drawing a circle. A rectangle class extends the drawObj class
and implements the Draw(win) method for drawing a rect-
angle. Consider further the scenario that an object having an
undefined class calls Draw(win). For at least one execution
path, the draw method in Circle class is called and the instruc-
tions in the Circle class are added to the execution path. To
mutate the execution path, the constraint solver may be
invoked to generate a new solution to the call target. The
constraint solver may create a solution whereby the call target
is the draw method in Rectangle class and the instructions in
the Rectangle class are added to the execution path. Thus, the
mutating allows for the obtaining of the different possible
execution paths.

FIG. 4 shows a flowchart for adding type constraints to a
path condition based on a statement in accordance with one or
more embodiments of the invention. In Step 401, a determi-
nation is made whether the statement is an instance of or cast
expression. Determining whether the statement is an instance
of or cast expression may be performed by determining
whether the statement matches the syntax grammar of the
programming language in which the software code is written
for instance of or cast expression. If the statement matches the
syntax grammar required, then the statement is either an
instance of or cast expression. In one or more embodiments of
the invention, the determination may be performed by deter-
mining whether a symbolic type rule for an instance of or cast
expression matches the statement.

In Step 403, the target class for the instance of or cast
expression is determined in accordance with one or more
embodiments of the invention. For instance of and cast
expressions, the target class is the class expressly listed in the
statement. Identifying the target class may be performed by
comparing the statement with the syntax grammar for the
instance of operator or cast operator. For example, in Java®
programming language, the target class is the class after the
instance of operator. Thus, determining the target class in
Java® programming language includes extracting the target
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class from the position after the instanceof operator. A similar
technique may be performed to identify the target class in the
cast expression.

In Step 405, a symbolic type constraint is added that
requires that the class of the object is either the target class or
extends the target class. In other words, in one or more
embodiments, the class of the object must either be the target
class or inherit from the target class in order for the statement
to be true. In one or more embodiments of the invention,
adding the symbolic type constraint may include updating the
stack and the symbolic trace to include the symbolic type
constraint.

Continuing with FIG. 4, in Step 407, a determination is
made whether the statement is an invoke expression in accor-
dance with one or more embodiments of the invention. Deter-
mining whether the statement is an invoke expression may be
performed in a same or similar manner to determining
whether the statement is an instance of or cast expression.
Specifically, by comparing the statement with the symbolic
grammar of the programming language for invoke expres-
sions, a determination may be made whether the statement
satisfies the requirements of the symbolic grammar.

In Step 409, possible target class(es) for the invoke expres-
sion are identified in accordance with one or more embodi-
ments of the invention. For invoke expressions, the possible
target classes are the classes that implement the method called
in the invoke expression. In one or more embodiments of the
invention, the software code is analyzed to identify possible
target classes of the invoke expression.

In Step 411, a symbolic type constraint is added that the
class inherits from at least one of the target class(es) and
implements the target method or is at least one of the target
class(es). Adding the symbolic type constraint may be per-
formed as discussed above with reference to Step 405.

In one or more embodiments of the invention, after an
execution path is enumerated, a determination may be made
whether the execution path is feasible. FIG. 5 shows a flow-
chart for determining whether an execution path is feasible in
accordance with one or more embodiments of the invention.
In Step 501, symbolic type constraints acting on the objects in
the path are identified in accordance with one or more
embodiments of the invention. The symbolic type constraints
may be obtained, for example, from the symbolic trace.

In Step 503, a determination is made whether a solution
exists that satisfies the symbolic type constraints in accor-
dance with one or more embodiments of the invention. Spe-
cifically, for each object having an undefined class, a deter-
mination is made whether a class exists that satisfies each of
the symbolic type constraints constraining the class of the
object. In accordance with one or more embodiments of the
invention, if any of the objects do nothave a class that satisfies
all of the symbolic type constraints, then a solution does not
exist.

In Step 505, if a solution does not exist, then the execution
path is discarded based on being infeasible in accordance
with one or more embodiments of the invention. Discarding
the execution path based on being infeasible may include
associating an infeasible identifier, such as a Boolean value,
with the execution path, listing the execution path in an infea-
sible list, ignoring the execution path when creating a test
case, deleting the execution path, performing another opera-
tion to indicate that the execution path is infeasible, or per-
forming a combination thereof.

Returning to Step 503, if each object has at least one
corresponding class that satisfies the symbolic type con-
straints, then a solution is deemed to exist. In Step 507,
non-type constraints are identified in the execution path. The



US 9,336,128 B2

13

non-type constraints may include the symbolic value con-
straints. The non-type constraints as identified based on being
the remaining constraints in the symbolic trace in accordance
with one or more embodiments of the invention.

In Step 509, a determination is made whether a solution
exists that satisfies the non-type constraints in accordance
with one or more embodiments of the invention. A solution
exists for non-type constraints when each variable has a cor-
responding starting value that satisfies each of the non-type
constraints that reference the variable. If any variable does not
have a corresponding starting value, then a solution does not
exist and the execution path is set as infeasible in Step 505.

If a solution does exist, then at least one test case is created
for the execution path in Step 511. Creating a test case is
performed based on any solutions identified that satisfy the
execution path. Specifically, a test case is created with con-
crete values that satisfy the solution. For symbolic types, a
separate test case may be created for each of the classes that
satisfy the symbolic type constraints in accordance with one
or more embodiments of the invention. Alternatively, a single
test case may be created for the entire execution path.

In one or more embodiments of the invention, the created
test case may be temporarily or permanently stored in the data
repository. Further, in accordance with one or more embodi-
ments of the invention, the created test case may be used by
the testing engine to test the software code with concrete
values. In particular, the software code may be executed with
the test case and the execution monitored by the testing
engine. Further, the testing engine may generate a report
based on monitoring the execution of the software code using
the test case.

The following example is for explanatory purposes only
and notintended to limit the scope of the invention. By way of
an example, consider the scenario in which the following
classes are defined. A car class extends (i.e., inherits from) an
object class. Each of a sedan class, sport utility vehicle class,
and truck class extends the car class. Each of a compact sedan
class, mid-size sedan class, and full-size sedan class extend
the sedan class. Both a two door sport utility vehicle class and
a four sport utility vehicle sedan class extend the sport utility
vehicle class. Each of a pickup truck class, a flatbed truck
class, and a box truck class extend the truck class.

Inthe example, the software code includes an object having
anundefined class, a cast expression on the object, an instance
of expression on the object, and a method invocation on the
object. The cast expression casts the object as a car. The
instance of expression is in a conditional branch instruction
that the object is an instance of sedan class in order for the
condition to evaluate to true. The invoke expression is in the
body of another conditional branch statement. The invoke
expression calls a method that is defined only in the mid-size
sedan class and the full-size sedan class. One or more
embodiments of the invention enumerate the various execu-
tion paths.

When encountering the above various statements in the
different execution paths, the following symbolic type con-
straints are added to the path condition. Based on a cast rule,
the cast expression that casts the object as a car is translated to
a symbolic type constraint requiring that the type of the object
is an instance of a car class or a class that extends the car class
(e.g., sedan class, sport utility vehicle class, truck class, com-
pact sedan class, mid-size sedan class, full-size sedan class,
two door sport utility vehicle class, a four sport utility vehicle
sedan class, pickup truck class, flatbed truck class, a box truck
class). Based on an instance of rule, the conditional branch
having an instance of with sedan class when true is interpreted
to require that the object is an instance of a sedan class or a
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class that inherits from the sedan class (e.g., compact sedan
class, mid-size sedan class, full-size sedan class). Based on an
invoke rule, the object calling the method that is defined only
in the mid-size sedan class and the full-size sedan class is
interpreted to require that the object is an instance of the
mid-size sedan class or the full-size sedan class.

Path constraints based on the path selected are also added
to the path condition to enumerate the various execution
paths. For example, for one execution path, the path con-
straint that is added the object is the instance of the mid-size
sedan class. When the path is mutated, the path constraint is
added that the object is an instance of the full-size sedan class.

The debugger enumerates the various execution paths
through the software code using the symbolic types in one or
more embodiments of the invention. Some of the execution
paths are feasible and some of the execution paths are infea-
sible. A constraint solver determines which execution paths
are feasible and which execution paths are infeasible. If the
above three example statements exist in an execution path of
the software code being debugged, then the execution path
may satisfy the constraints if the object is a mid-size sedan or
a full-size sedan. Thus, the execution path is deemed feasible.
Thus, at least one test case may be created whereby the object
is a mid-size sedan and at least another test case may be
created whereby the object is a full-size sedan to determine
how the software code actually executes.

In contrast, if a second execution path is defined that
includes the first example statement, the second example
statement (i.e., conditional branch) as not true, and the third
example statement above, then no class exists for the object
that satisfies all three constraints because both the mid-size
sedan and the full-size sedan inherit from the sedan class.
Thus, the second execution path is infeasible and the debug-
ger may ignore the execution path.

As shown by way of the example, one or more embodi-
ments of the invention are able to enumerate the possible
execution paths using symbolic types rather than just sym-
bolic values. Thus, the feasible execution paths may be enu-
merated for software libraries and interfaces even when the
software library or interface includes objects having an unde-
fined class. By being able to enumerate the feasible execution
paths, test cases that apply to each of the different execution
paths may be defined, thereby, increasing code coverage dur-
ing testing in one or more embodiments of the invention. In
one or more embodiments of the invention, by increasing
code coverage, more defects may be uncovered and corrected
to increase the quality of the software code.

The following is an example of symbolic type rules that
may be used in accordance with one or more embodiments of
the invention. Additional or alternative symbolic type rules
may be used without departing from the scope of the inven-
tion. In the example, the symbols and variables used below
are the same throughout the example.

In one or more embodiments of the invention, to support
symbolic types, method signatures are introduced to sym-
bolic value execution to reason about method implementa-
tions. The method signature domain may follow the following
syntactic grammar, where M is the methodand C, ..., C, are
classes.

Sig_namre::{M (S Ca}

Objects may have concrete values or symbolic values. The
syntactic grammar may be updated to include the following
definitions for concrete value (ConcreteVal) and symbolic
value (SymbolicVal).

ConcreteVal:=CONSTIObj|CICICOSignature

SymbolicVal:=ConcreteVal|SymCons-
traint/SymNum|SymType|Sym Type©Signature
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In the above definition, the concrete value may be a con-
stant (CONST), an object (Obj), a class (C), or a
COSignature, where CO is a declaration in class C of the
method with a signature (Signature). Further, the symbolic
value may be a concrete value, a symbolic constraint (Sym-
Constraint), such as a symbolic type constraint or a symbolic
value constraint, a symbolic number (SymNum), a symbolic
type (SymType), or SymTypeOSignature, where SymType®
is a declaration in the class represented by the SymType of the
method with a signature (Signature).

Further, the following semantic function [[-]],, for primary
expressions may be defined as follows.

lels =

car(s)(V)
{ (CONST, “CONST”)

if e is a variable V and car (s7)(‘V) is defined,
if e is a constant CONST

For instanceof, the following symbolic type rule may be
defined.

S: V=N instanceof C;
(symir, st, hp)——— (symtr’, st’, hp), where

(0bj, 0b)) = [V' I
(C’, “symiype”) = hp((Obj, TYPE)), symir’ = cons((S, true), symir),

st = cons(car(st)[V v (C' 2 C, “symtype 2 C")], s1),

In the above rule, the execution path is represented as a
tuple having a symbolic trace (symtr), a stack (st), and a heap
(hp). S is the statement. Further, a “” refers to the item before
the “’” as an updated version or possibly a different reference.
For example, symtr' is symtr updated. As another example, V'
may be possibly a different reference than V. An object is
represented as (Obj, Obj) where the first Obj is for the type
and the second Obj is for the value. The C<C' means that
class C is C' or (possibly transitively) extends C'. Cons is
construct list, Car is the first item in the list, Cdr is the rest of
the list. Thus, symtr'=cons((S, true), symtr) means that the list
of the symbolic trace is updated to include the statement S
being evaluated to true. As shown above, a lookup of the
symbolic type of V' is performed and introduced as the sym-
bolic type constraint on the symbolic representation of the
result. A conditional branch that depends on V will introduce
type constraints accordingly.

For cast, the following symbolic type rule may be defined
to handle referential downcasting.

(symir, s, hp)&vz.o:cw(symt/ , st’, hp), where
(0bj, 0bj) = [el, addr = (Obj, TYPE),
(C’, “symiype”) = hpladdr), C' = C,
and symzy’ = cons((S, “symiype < C")], symir),

For method invocations, the following symbolic type rule
may be defined.

S:
(symir, st, hp):ir(symt/ , s, hp), where

o=V.Mley, ... ,ep) m=lookup(c),

st’ = cons| U (formal(m); & [e;1,), sz,
iZ1
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-continued
(0bj, 0b)) =[V]g, addr = (0Obj, TYPE),
(C, “symtype’) = hp(addr), C =2 C’, implement{C’, m), and
symir’ =

cons((S, “inheritsMethod(symiype, m), symiype ©m = C' -m"), symtr)

In one or more embodiments of the invention, the symbolic
type constraints are applied to reflection. Software code may
use reflection to introspect the properties of the object-ori-
ented software programs itself. Below is an example for han-
dling reflection in the Java® programming language.

To handle the reflection application programming inter-
face, the possible input types are related to the reflective
invocation target method. In Java® programming language’s
reflection APL, a class and a method are respectively heap
objects of java.lang.Class and java.lang.reflect.Method
classes, whose properties (fields) cannot be modified. Thus,
the symbolic execution state discussed in the previous
example does not need to be changed to support reflection.
For the following example, the same symbols are used as the
previous example. Specifically, a class is identified using the
identifier C, and a method is identified by the declaration of
the method by the method’s declaration (e.g., COm for meS-
ignature. A class heap object is represented using the pair (C,
“symtype”) with symtypeeSymType, while a method object
is represented using the pair (COm; “symtype©Om”) with
symtypeeSymType and meSignature.

For class literals, the class information is stored onto a
frame in the stack. The type of a class is predetermined to be
java.lang.Class such that the class information may not be
stored on the heap. The following is an example rule for
storing the class information on the stack.

8t V=C.class;
(symir, st, hp)=—= (symir’, st’, hp), where

st' = cons(car(s))[V v (C, )], s1), and symzr’ = cons((S, “true”), symir)

In Java® programming language, other than using .class
field, a class may also be obtained using getClass( ) method of
java.lang.Object class. The following three symbolic type
rules may be defined. The first rule below is when getClass( )
is invoked on ordinary instance that is not a class. The second
rule below is for when getClass( ) is invoked on an instance
that is a class. The type of a class is java.lang.Class. The third
rule below is for when getClass( ) is invoked on an instance
that is a method, whose class is java.lang.reflect. Method.

First Rule:

S V.getClass();
———— (symtr’, st’, hp), where

(symir, st, hp)
(0bj, 0bj) = [VI, (C, “symiype”) = hp((Obj, TYPE)),
st' = cons(car(st)[callee.ret - (C, “symiype” )], st),

and symzr’ = cons((S, “true”, symir)
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Second Rule:
S: V.getClass();
(symtr, st, hp)——== (symir’, st’, hp), where
(€, )=V,

st' = cons(car(st)[callee.ret v (java.lang.Class, “javalang.Class”)], st),

and symzr’ = cons((S, “true”), symir)

Third Rule:

. V.getClass();
_

S
(symir, st, hp) (symitr’, st', hp), where

(COm, “symiype ©m”) = [V,
st = cons(car(st)[callee.ret
(javalangreflect Method, “java.langreflect Method”)], s1),

and symzr’ = cons((S, “true”), symir)

In order to support the ForName reflective call, the follow-
ing rule may be applied. Specifically, a usage of Class.for-
Name( ) is by supplying the ForName call with a constant
argument. Class.forName(C) returns the class identifier C.
Therefore, the following rule may be used for the execution of
the interface.

. Class. forNamae(C);
_—

S:
(symir, st, hp) (symir’, st’, hp), where

st = cons(car(st)[callee.ret — (C, _)], s1),

and symzr’ = cons((S, “true”), symir)

Another potential usage of the ForName method call is
when ForName method call is provided with a reference to a
java.lang.String object. The String object which represents a
class name may be represented the same as a class. Thus, the
following symbolic type rule may be defined.

S: Class. forNamae('V);
(symir, st, hp)——

(C, “symype”) = [V,

(symtr’, st’, hp), where

st = cons(car(st)[callee.ret - (C, “symtype” )], s1),

and symzr’ = cons((S, “true”), symir)

Continuing with the example, the Class.newlnstance( )
method call creates a new object of the corresponding type.
The following symbolic type rule may be defined for when
the provided reference V in the call refers to a class. The
symbolic type rule may be a restriction that the new instances
created cannot be java.lang.class or java.lang.reflect. method.

: V.newlnstance();

S
(symir, st, hp) (symtr’, st’, hp'), where
(©, “symype”) = [V
0bj is the created heap object not referenced in either st or Aip,

st’ = cons(car(st)[callee.ret - (Obj, Obj)], st),
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-continued

’

W =
hp | {addr v default| addr = (Obj, F), F € fields(C), ¥ = TYPE} U
{(0bj, TYPE) & (C, “symiype”)},
and symir’ = cons((S, “symiype &

{java.lang.Class, java.langreflect Method}”), symir)

The Class.getDeclaredMethod(m) returns a reflective rep-
resentation of method with signature m declared in the class.
The following symbolic type rule may be defined for getDe-
claredMethod(m) method call.

: V.getDeclaredMethod(m)
_

S:
(symir, st, hp) (symtr’, st’, hp'), where

st' = cons(car(st)[callee.ret v (C O m, “symiype ©m” )], st),
(C, “symiype”) = [V,

and symur’ = cons((S, “true”), symir)

Java® programming language’s Method.getDeclaring-
Class( ) method returns the declaring class of a given method
object. The following symbolic type rule may be defined for
Method.getDeclaringClass( ) method call.

S: V.getDeclareingClass();
(symir, st, hp)——

(symtr’, st’, hp), where
(Cn ©m, “symiype, Om") = [V,
st = cons(car(st)[callee.ret = (Cpy, “symiype,,” )], st),

and symzr’ = cons((S, “true”), symir)

The Method.invoke( ) method call invokes the method
represented by the reflective object. To handle the Method-
.invoke( ) method call, a lookup is performed on the method
that is represented, then invoke the method. The following
symbolic type rule may be defined to handle the Method.in-
voke( ) method call.

S: V.invoke(eg,eq ... en);
(symir, st, hp) (symtyr’, s, hp), where
(Cn ©m, “symiype, Om") = [ V],

n

st = cons U (formal(m); & [e;1), sz,
iZ1

(0bj, 0bj) = [leolls, addr = (0bj, TYPE),
(C, “symiype”) = hp(addr), C = C’, implementsC’, m),
and symzr’ = cons((S, “symiype = symiype,,,

inheritsMethod(symiype, m), symiype ©m = C' -m"), symir)

The following symbolic type rule may be applied to the
invocation of a method of java.lang.Class.

: Vinvoke(eg.e] ...

S en);
(symir, st, hp) (symtyr’, s, hp), where

(java.lang Class © m, javalangClass ©m) = [V],
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-continued
st’ = cons| U (formal(m); & [e;1,), sz,
i=1
(C, ) = leoll;, inheritsMethod(java.lang Class, m),

and symzr’ = cons((S, “true”), symir)

In one or more embodiments of the invention, instead of
actually symbolically executing the method code of the meth-
ods of java.lang.Class or java.lang.Object which the method
code extends, the special cases for when m is .class,
.getClass( ), forName( ), newlnstance( ) or getDeclared-
Method( ) may be considered as follows. For example, when
m in the above rule is getDeclaredMethod(m') for some
m'eSignature, the following rule may be applied to summa-
rizes the successful execution of the method.

+ V.invoke(eq m);
(symtr’, st’, hp), where

(symir, st, hp)s

(javalangClass © m’, javalangClass ©m’) = [V],

m’ = getDeclaredMethod(javalang Object, java.lang Class[ ],
(€, “symiype”) = [eolly.

st’ = cons(car(st)[callee.ret — (C © m, “symiype @ m" )], st),

and symzr’ = cons((S, “true”), symir)

The symbolic execution rules for instanceof, casting, and
invoke statement may be extended to take into account classes
and methods when reflective calls are supported. The follow-
ing rules may be applied to extend instanceof, casting, and
invoke statements, respectively.

V=V instanceof C;
(symzr’, st’, hp), where

S:
(symir, st, hp)
€, )=1VI.
st’ = cons(car(s))['V  (C = javalang.Class, “C = javalangClass”)], s1),

and symzr’ = cons((S, “true”), symir)

S: V=Cl(e);
(symir, st, hp)=— (symir’, st’, hp), where
(C’, “symiype”) = [elly, C € {javalangObject, java.lang Class},
st' = cons(car(s))['V v (C’, “symiype”)], cdr(st)),

and symir’ = cons((S, “true”), symir)

S:
(symir, st, hp):(f(symt/ , s, hp), where
o=V.Mley, ... ,ep) m=lookup(c),
(C, “symiype”) = [V, implementsjava.lang Class, m),
st’ = con| U (formal(m); - [ei]y), st|, and symzr’ =
iZ1

cons((S, “true”), symir)

The following are rules may be applied to handle the cases
for method objects.

S: V=Vinstanceof C;
(symir, st, hp)——=>(symur’, st’, hp), where
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-continued
Com, _om)=[VIg,

st' = cons(car(s))['V  (C = javalangreflect Method,
“C = javalangreflect Method”)], s1),

and symur’ = cons((S, “true”), symir)

(symir, st, hp)&vz.w(symt/ , s, hp), where
€ Om, “symiype Om") = ],
C € {javalangreflect Method, java.lang Object}
st' = cons(car(s))[V > (C O m, “symiype © m")], cdr(si)),

and symzr’ = cons((S, “true”), symir), and

S o
(symir, s, hp):a.o (symtr’, st , hp), where

o=V.Mey, ... ,en);, m=lookup(c), (COm, “symiype ©m”) = [ V],

implementsjava.lang Method, m),

st’ = con| U (formal(m); - [e;1,,), st|, and symzr’ =
=1

cons((S, “true”), symir)

Embodiments of the invention may be implemented on
virtually any type of computing system regardless of the
platform being used. For example, the computing system may
be one or more mobile devices (e.g., laptop computer, smart
phone, personal digital assistant, tablet computer, or other
mobile device), desktop computers, servers, blades in a server
chassis, or any other type of computing device or devices that
includes at least the minimum processing power, memory,
and input and output device(s) to perform one or more
embodiments of the invention. For example, as shown in FIG.
6, the computing system (600) may include one or more
computer processor(s) (602), associated memory (604) (e.g.,
random access memory (RAM), cache memory, flash
memory, etc.), one or more storage device(s) (606) (e.g., a
hard disk, an optical drive such as a compact disk (CD) drive
or digital versatile disk (DVD) drive, a flash memory stick,
etc.), and numerous other elements and functionalities. The
computer processor(s) (602) may be an integrated circuit for
processing instructions. For example, the computer
processor(s) may be one or more cores, or micro-cores of a
processor. The computing system (600) may also include one
or more input device(s) (610), such as a touchscreen, key-
board, mouse, microphone, touchpad, electronic pen, or any
other type of input device. Further, the computing system
(600) may include one or more output device(s) (608), such as
a screen (e.g., a liquid crystal display (LCD), a plasma dis-
play, touchscreen, cathode ray tube (CRT) monitor, projector,
or other display device), a printer, external storage, or any
other output device. One or more of the output device(s) may
be the same or different from the input device(s). The com-
puting system (600) may be connected to a network (614)
(e.g., a local area network (LAN), a wide area network
(WAN) such as the Internet, mobile network, or any other
type of network) via a network interface connection (not
shown). The input and output device(s) may be locally or
remotely (e.g., via the network (612)) connected to the com-
puter processor(s) (602), memory (604), and storage
device(s) (606). Many different types of computing systems
exist, and the aforementioned input and output device(s) may
take other forms.
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Software instructions in the form of computer readable
program code to perform embodiments of the invention may
be stored, in whole or in part, temporarily or permanently, on
a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, flash memory, physi-
cal memory, or any other computer readable storage medium.
Specifically, the software instructions may correspond to
computer readable program code that when executed by a
processor(s), is configured to perform embodiments of the
invention.

Further, one or more elements of the aforementioned com-
puting system (600) may be located at a remote location and
connected to the other elements over a network (614). Fur-
ther, embodiments of the invention may be implemented on a
distributed system having a plurality of nodes, where each
portion of the invention may be located on a different node
within the distributed system. In one embodiment of the
invention, the node corresponds to a distinct computing
device. Alternatively, the node may correspond to a computer
processor with associated physical memory. The node may
alternatively correspond to a computer processor or micro-
core of a computer processor with shared memory and/or
resources.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

What is claimed is:

1. A method for object-oriented programming code analy-
sis, comprising:

generating, by a computer processor, a first execution path

through software code, the first execution path compris-

ing a first path condition, the first path condition com-

prising a plurality of symbolic type constraints on the

first execution path, wherein generating the first execu-

tion path comprises:

obtaining a symbol representing any of a plurality of
possible types of an object having an undefined class;

updating the symbol for the object with a first symbolic
type constraint which adds the first symbolic type
constraint to the first path condition of the first execu-
tion path based on a first statement in the first execu-
tion path; and

updating the symbol for the object with a second sym-
bolic type constraint which adds the second symbolic
type constraint to the first path condition of the first
execution path based on a second statement in the first
execution path;

making, by the computer processor, a first determination

that the first path condition of the first execution path is
infeasible based on determining that a class does not
exist that satisfies the first symbolic type constraint of
the object and the second symbolic type constraint of the
object;

discarding the first execution path based on the first deter-

mination;

generating a second execution path through the software

code, the second execution path comprising a second

path condition, the second path condition comprising a

plurality of symbolic type constraints on the second

execution path, wherein generating the second execu-

tion path comprises:

updating the symbol for the object with a third symbolic
type constraint which adds the third symbolic type
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constraint to the second path condition of the second

execution path based on a first statement in the second

execution path; and

updating the symbol for the object with a fourth sym-
bolic type constraint which adds the fourth symbolic
type constraint to the second path condition of the
second execution path based on a second statement in
the second execution path;

making a second determination that the second path con-

dition of the second execution path is feasible based on,
at least in part, determining that a class does exist that
satisfies the third symbolic type constraint and the fourth
symbolic type constraint; and

generating a test case based on the second determination.

2. The method of claim 1, further comprising:

determining that the second statement in the second execu-

tion path is a conditional branch statement in the second
execution path;

generating the second execution path in response to the

conditional branch statement.

3. The method of claim 2, wherein the conditional branch
statement comprises an instance of expression comprising a
target class, and wherein, based on the instance of expression,
the second symbolic type constraint specifies that the unde-
fined class of the object is one selected from the target class
and extends the target class.

4. The method of claim 1, wherein the first statement of the
first execution path is the same as the first statement of the
second execution path.

5. The method of claim 1, wherein the second statement in
the first execution path is a cast expression comprising a target
class, and wherein, based on the cast expression, the second
symbolic type constraint specifies that the undefined class of
the object is one selected from the target class and extends the
target class.

6. The method of claim 1, wherein the second statement in
the first execution path is an invoke expression comprising at
least one target class, and wherein, based on the invoke
expression, the second symbolic type constraint specifies that
the undefined class of the object is one selected from a group
consisting of a class that inherits from the at least one target
class and at least one of the target classes.

7. A system for object-oriented programming code analy-
sis comprising:

a computer processor;

a data repository for storing software code and a plurality

of symbolic type rules; and

a debugger executing on the computer processor and com-

prising:
a symbolic type analysis engine comprising:
a symbolic type path analyzer for: generating a first
execution path through software code, the first
execution path comprising a first path condition,
the first path condition comprising a plurality of
symbolic type constraints on the first execution
path, wherein generating the first execution path
comprises:
obtaining a symbol representing any of a plurality
of possible types of an object having an unde-
fined class;

updating the symbol for the object with a first sym-
bolic type constraint which adds the first sym-
bolic type constraint to the first path condition of
the first execution path based on a first statement
in the first execution path; and

updating the symbol for the object with a second
symbolic type constraint which adds the first
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symbolic type constraint to the first path condi-
tion of the first execution path based on a second
statement in the first execution path; and
generating a second execution path through the soft-
ware code, the second execution path comprising a
second path condition, the second path condition
comprising a plurality of symbolic type constraints
on the second execution path, wherein generating
the second execution path comprises:
updating the symbol for the object with a third
symbolic type constraint which adds the third
symbolic type constraint to the second path con-
dition of the second execution path based on a
first statement in the second execution path; and
updating the symbol for the object with a fourth
symbolic type constraint which adds the fourth
symbolic type constraint to the second path con-
dition of the second execution path based on a
second statement in the second execution path;

a constraint solver for:

making a first determination that the first path condition
of'the first execution path is infeasible based on deter-
mining that a class does not exist that satisfies the first
symbolic type constraint of the object and with the
second symbolic type constraint of the object;

discarding the first execution path based on the first
determination;

making a second determination that the second path
condition of the second execution path is feasible
based on, at least in part, determining that a class does
exist that satisfies the third symbolic type constraint
and the fourth symbolic type constraint; and

generating a test case based on the second determina-
tion.

8. The system of claim 7, further comprising:

a testing engine configured to track execution of the soft-

ware code using the test case to obtain a result.

9. The system of claim 8, further comprising:

areport generator configured to generate a report using the

result.

10. A non-transitory computer readable medium for
object-oriented programming code analysis, comprising
instructions for:

generating a first execution path through software code, the

first execution path comprising a first path condition, the
first path condition comprising a plurality of symbolic
type constraints on the first execution path, wherein
generating the first execution path comprises:
obtaining a symbol representing any of a plurality of
possible types of an object having an undefined class;
updating the symbol for the object with a first symbolic
type constraint which adds the first symbolic type
constraint to the first path condition of the first execu-
tion path based on a first statement in the first execu-
tion path, and
updating the symbol for the object with a second sym-
bolic type constraint which adds the second symbolic
type constraint to the first path condition of the first
execution path based on a second statement in the first
execution path;
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making a first determination that the first path condition of
the first execution path is infeasible based on determin-
ing that a class does not exist that satisfies the first
symbolic type constraint of the object and the second
symbolic type constraint of the object; and

discarding the first execution path based on the first deter-

mination;

generating a second execution path through the software

code, the second execution path comprising a second

path condition, the second path condition comprising a

plurality of symbolic type constraints on the second

execution path, wherein generating the second execu-

tion path comprises:

updating the symbol for the object with a third symbolic
type constraint which adds the third symbolic type
constraint to the second path condition of the second
execution path based on a first statement in the second
execution path; and

updating the symbol for the object with a fourth sym-
bolic type constraint which adds the fourth symbolic
type constraint to the second path condition of the
second execution path based on a second statement in
the second execution path;

making a second determination that the second path con-

dition of the second execution path is feasible based on,
at least in part, determining that a class does exist that
satisfies the third symbolic type constraint and the fourth
symbolic type constraint; and

generating a test case based on the second determination.

11. The non-transitory computer readable medium of claim
10, further comprising instructions for:

determining that the second statement in the second execu-

tion path is a conditional branch statement in the second
execution path;

generating the second execution path in response to the

conditional branch statement.

12. The non-transitory computer readable medium of claim
11, wherein the conditional branch statement comprises an
instance of expression comprising a target class, and wherein,
based on the instance of expression, the second symbolic type
constraint specifies that the undefined class of the object is
one selected from the target class and extends the target class.

13. The non-transitory computer readable medium of claim
10, wherein the first statement of the first execution path is the
same as the first statement of the second execution path.

14. The non-transitory computer readable medium of claim
10, wherein the second statement in the first execution path is
a cast expression comprising a target class, and wherein,
based on the cast expression, the second symbolic type con-
straint specifies that the undefined class of the object is one
selected from the target class and extends the target class.

15. The non-transitory computer readable medium of claim
10, wherein the second statement in the first execution path is
an invoke expression comprising at least one target class, and
wherein, based on the invoke expression, the second symbolic
type constraint specifies that the undefined class of the object
is one selected from a group consisting of a class that inherits
from the at least one target class and at least one of the target
classes.



